MCMCglmm following tutorial

##   animal MOTHER BYEAR SEX   BWT TARSUS
## 1   1029   1145   968   1 10.77  24.77
## 2   1299    811   968   1  9.30  22.46
## 3    643    642   970   2  3.98  12.89
## 4   1183   1186   970   1  5.39  20.47
## 5   1238   1237   970   2 12.12     NA
## 6    891    895   970   1    NA     NA
##     ID FATHER MOTHER
## 1 1306   <NA>   <NA>
## 2 1304   <NA>   <NA>
## 3 1298   <NA>   <NA>
## 4 1293   <NA>   <NA>
## 5 1290   <NA>   <NA>
## 6 1288   <NA>   <NA>
## 
##                        MCMC iteration = 0
## 
##                        MCMC iteration = 1000
## 
##                        MCMC iteration = 2000
## 
##                        MCMC iteration = 3000
## 
##                        MCMC iteration = 4000
## 
##                        MCMC iteration = 5000
## 
##                        MCMC iteration = 6000
## 
##                        MCMC iteration = 7000
## 
##                        MCMC iteration = 8000
## 
##                        MCMC iteration = 9000
## 
##                        MCMC iteration = 10000
## 
##                        MCMC iteration = 11000
## 
##                        MCMC iteration = 12000
## 
##                        MCMC iteration = 13000
## 
##  Iterations = 3001:12991
##  Thinning interval  = 10
##  Sample size  = 1000 
## 
##  DIC: 3912.555 
## 
##  G-structure:  ~animal
## 
##        post.mean l-95% CI u-95% CI eff.samp
## animal     3.402     2.21    4.607    185.8
## 
##  R-structure:  ~units
## 
##       post.mean l-95% CI u-95% CI eff.samp
## units     3.847    2.865    4.919      218
## 
##  Location effects: BWT ~ 1 
## 
##             post.mean l-95% CI u-95% CI eff.samp  pMCMC    
## (Intercept)     7.588    7.316    7.858     1000 <0.001 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##   animal    units 
## 3.335676 3.475024
## Warning: 'cBind' is deprecated.
##  Since R version 3.2.0, base's cbind() should work fine with S4 objects
## 
##                        MCMC iteration = 0
## 
##  Acceptance ratio for liability set 1 = 0.000871
## 
##                        MCMC iteration = 1000
## 
##  Acceptance ratio for liability set 1 = 0.322345
## 
##                        MCMC iteration = 2000
## 
##  Acceptance ratio for liability set 1 = 0.308924
## 
##                        MCMC iteration = 3000
## 
##  Acceptance ratio for liability set 1 = 0.308784
## 
##                        MCMC iteration = 4000
## 
##  Acceptance ratio for liability set 1 = 0.349901
## 
##                        MCMC iteration = 5000
## 
##  Acceptance ratio for liability set 1 = 0.346181
## 
##                        MCMC iteration = 6000
## 
##  Acceptance ratio for liability set 1 = 0.346789
## 
##                        MCMC iteration = 7000
## 
##  Acceptance ratio for liability set 1 = 0.347614
## 
##                        MCMC iteration = 8000
## 
##  Acceptance ratio for liability set 1 = 0.352807
## 
##                        MCMC iteration = 9000
## 
##  Acceptance ratio for liability set 1 = 0.341111
## 
##                        MCMC iteration = 10000
## 
##  Acceptance ratio for liability set 1 = 0.353094
## 
##                        MCMC iteration = 11000
## 
##  Acceptance ratio for liability set 1 = 0.344895
## 
##                        MCMC iteration = 12000
## 
##  Acceptance ratio for liability set 1 = 0.336404
## 
##                        MCMC iteration = 13000
## 
##  Acceptance ratio for liability set 1 = 0.345690
## 
##  Iterations = 3001:12991
##  Thinning interval  = 10
##  Sample size  = 1000 
## 
##  DIC: 7925.144 
## 
##  G-structure:  ~us(trait):animal
## 
##                                post.mean l-95% CI u-95% CI eff.samp
## traitBWT:traitBWT.animal           3.312   2.0861    4.581   144.37
## traitTARSUS:traitBWT.animal        2.430   0.1883    4.540    89.75
## traitBWT:traitTARSUS.animal        2.430   0.1883    4.540    89.75
## traitTARSUS:traitTARSUS.animal    11.972   7.0739   18.930    89.85
## 
##  R-structure:  ~us(trait):units
## 
##                               post.mean l-95% CI u-95% CI eff.samp
## traitBWT:traitBWT.units           3.930    2.985    4.942    174.1
## traitTARSUS:traitBWT.units        3.373    1.548    5.269    111.8
## traitBWT:traitTARSUS.units        3.373    1.548    5.269    111.8
## traitTARSUS:traitTARSUS.units    18.213   13.180   23.254    102.5
## 
##  Location effects: cbind(BWT, TARSUS) ~ trait - 1 
## 
##             post.mean l-95% CI u-95% CI eff.samp  pMCMC    
## traitBWT        7.591    7.318    7.857    623.5 <0.001 ***
## traitTARSUS    20.546   19.997   21.093    872.5 <0.001 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

brms, following vignette

## Warning: Rows containing NAs were excluded from the model.
## Compiling the C++ model
## Start sampling
## Warning: There were 2 chains where the estimated Bayesian Fraction of Missing Information was low. See
## http://mc-stan.org/misc/warnings.html#bfmi-low
## Warning: Examine the pairs() plot to diagnose sampling problems
##  Family: gaussian 
##   Links: mu = identity; sigma = identity 
## Formula: BWT ~ 1 + (1 | animal) 
##    Data: Data (Number of observations: 854) 
## Samples: 2 chains, each with iter = 1000; warmup = 500; thin = 1;
##          total post-warmup samples = 1000
## 
## Group-Level Effects: 
## ~animal (Number of levels: 854) 
##               Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
## sd(Intercept)     1.86      0.17     1.54     2.19         74 1.00
## 
## Population-Level Effects: 
##           Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
## Intercept     7.58      0.14     7.31     7.86        451 1.00
## 
## Family Specific Parameters: 
##       Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
## sigma     1.94      0.13     1.67     2.20         74 1.00
## 
## Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample 
## is a crude measure of effective sample size, and Rhat is the potential 
## scale reduction factor on split chains (at convergence, Rhat = 1).

Bivariate model

## Setting 'rescor' to TRUE by default for this model
## Warning: Rows containing NAs were excluded from the model.
## Compiling the C++ model
## Start sampling
## Warning: There were 1 chains where the estimated Bayesian Fraction of Missing Information was low. See
## http://mc-stan.org/misc/warnings.html#bfmi-low
## Warning: Examine the pairs() plot to diagnose sampling problems
##  Family: MV(gaussian, gaussian) 
##   Links: mu = identity; sigma = identity
##          mu = identity; sigma = identity 
## Formula: BWT ~ 1 + (1 | animal) 
##          TARSUS ~ 1 + (1 | animal) 
##    Data: Data (Number of observations: 683) 
## Samples: 2 chains, each with iter = 1000; warmup = 500; thin = 1;
##          total post-warmup samples = 1000
## 
## Group-Level Effects: 
## ~animal (Number of levels: 683) 
##                      Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
## sd(BWT_Intercept)        1.60      0.18     1.23     1.94         71 1.00
## sd(TARSUS_Intercept)     2.90      0.43     1.97     3.69         89 1.01
## 
## Population-Level Effects: 
##                  Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
## BWT_Intercept        7.48      0.15     7.17     7.77       1000 1.00
## TARSUS_Intercept    20.35      0.29    19.75    20.90       1000 1.00
## 
## Family Specific Parameters: 
##              Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
## sigma_BWT        2.13      0.13     1.88     2.36         79 1.00
## sigma_TARSUS     4.59      0.26     4.07     5.10        112 1.01
## 
## Residual Correlations: 
##                    Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
## rescor(BWT,TARSUS)     0.54      0.05     0.45     0.63        133 1.01
## 
## Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample 
## is a crude measure of effective sample size, and Rhat is the potential 
## scale reduction factor on split chains (at convergence, Rhat = 1).

## $animal
## $animal$sd
##                  Estimate Est.Error     Q2.5    Q97.5
## BWT_Intercept    1.599120 0.1830747 1.233210 1.942857
## TARSUS_Intercept 2.896177 0.4262761 1.974863 3.691098
## 
## 
## $residual__
## $residual__$sd
##        Estimate Est.Error     Q2.5    Q97.5
## BWT    2.125112 0.1283578 1.884407 2.363342
## TARSUS 4.592198 0.2577639 4.070870 5.100268
## 
## $residual__$cor
## , , BWT
## 
##         Estimate  Est.Error      Q2.5     Q97.5
## BWT    1.0000000 0.00000000 1.0000000 1.0000000
## TARSUS 0.5402788 0.04566532 0.4526675 0.6294334
## 
## , , TARSUS
## 
##         Estimate  Est.Error      Q2.5     Q97.5
## BWT    0.5402788 0.04566532 0.4526675 0.6294334
## TARSUS 1.0000000 0.00000000 1.0000000 1.0000000
## 
## 
## $residual__$cov
## , , BWT
## 
##        Estimate Est.Error     Q2.5    Q97.5
## BWT    4.532561 0.5450292 3.550989 5.585384
## TARSUS 5.264724 0.5549383 4.258810 6.402712
## 
## , , TARSUS
## 
##         Estimate Est.Error     Q2.5     Q97.5
## BWT     5.264724 0.5549383  4.25881  6.402712
## TARSUS 21.154662 2.3686877 16.57199 26.012740